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andthe radius of CSisthe same as the radius
of Cz. The transformation

Y–1
r=—

Y+ 1

maps the circle CS into the circle CZ in the
r plane. The center of the circle C2 is at

B2 – ~2B
.

4+2B2”

The corresponding admittance of the center

of C2is

I +r
“= -H

Let r~ and r. denote the current reflec-

tion coefficients corresponding to yb and
Y., respectively. The values of rb and r. are

given by the equations

r,. ~~{~~$<,

rc. ~;;~~~.

Since Yb and Y. lie on the circle Cl,

B2
.

Z2+B2”

This equation can be solved for B to obtain
(2). If g= 1, it is obvious that 2B = –b.
Thus for a given ril and the corresponding
Ya = g+jb, there are generally two possible
values of B. This is illustrated in Figs. 6(a)

and 7 where the value of Y. is the same but

the values of B are different. [For Fig. 6(a),
Y.= 1.9–j2 and B = 1. For Fig. 7,B = –5.4.]

HAROLD F. MATIHS

Goodyear Aircraft Corp.
Akron, Ohio

Letter j%om Mr. Reedc

Mr. Mathis’ theorem is correct but the

procedure resulting from this theorem does

not give a good result from an engineering

standpoint. The result of what he calls two-
sided matching will give a match not only
at the design center frequency, but also at

some other frequency. Thus, the perform-

ance curve will not be symmetrical about
the design center. The procedure suggested

in my last note would give a symmetrical
curve with maximally-flat response in which
the two frequencies of match are the same.

Suppose it is desired to cancel out an
inductive iris which has a normalized sus-

ceptance of — 2. The reflection from this can
be cancelled out by the use of another iris
whose susceptance is also — 2 spaced down

the line toward the generator by three-

eighths of a wavelength.
Thus, according to his theorem, we can

split the matching into two susceptances of

– 1 on either side of the susceptance of –2

spaced 0.375 Ag (tan 2m/Xg = — 1) of a
wavelength from it. But match would also

occur if the spacing were 0.3245 Xg (tan
2ws/’Ag = –2).

For critical couplingB ~B2+4 is set
equal to – 2 and the resulting equation
solved for B giving B to —0.91018. This
value of B is inserted into the formula for
p, thus resulting in this case of a value of p

equal to 0.3465Ag. See Fig. 8.

BReceived by the PGMTT, December 19, 1956.
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Fig. 8.

m Approximate performance curves for

one-sided matching. two-sidecl match in~

using the Mathis - theory, and critica,ll~
coupled performance as described abo~-e :are
shown below. Some impro~-ements in the

critically coupled performance can be ,ob-
tained by letting the midband be mism-
atched but be matched on either side of the
design frequency. See Fig. 9Lbelow.
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Fig. 9.

JOHN R~ED

Autho~’s Comment?

I agree with the remarks in Mr. Reed’s
recent note. In my original brief notes, I did
not consider the effects of varying the fre-

quency. His two notes are most interesting
and valuable. I do not think that I can add
anything of value.

H. F. MATIW

7 Received by the PGMTT, January 27, 1957.

The Available Power of a Matched

Generator from the Measured Load

Power in the Presence of Small

Dissipation and Mismatch of the

Connecting Network*

It is sometimes necessary to determine
the available power of a matched generator
in terms of the power dissipated in a load

when the load is connected to the generator

by means of a slightly mismatched 4-pzJe
having small loss. (A piece of waveguide or
short length of coaxial line could exemplify
such a 4-poIe; the discontinuities at flanges
or at connectors and supporting beads could
give rise to the slight mismatch.)

* Received by the PGMTT, October 1, 1956. The
research reported in this document has been made Pos-
sible through support and sponsorsb ip extended by the
Rome .4ir Dev. Ctr., Contract AF-30(602)-98S. It is
rublished for technical in formatmn onlY and does not
iepresent recommendations or conclusions of the spon-
soring agency.
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Referring to Fig. 1,

p---r~ , 0
t

LOAD

r,n < rL-+

Fig, 1

let

r~ = the reflection coefficient of the load
r,. = the reflection coefficient of the 4-

pole-~nd load

.SU, S22, .Sh = the scattering coefficients of
the 4-pole

Po = the available power of the generator

PL = the power dissipated in the load

P& = KPo. (1)

The constant K may be expressed in
terms of all or some of the scattering coeff-
icients and only one of the reflection coeffi-
cients—either rL or rin. Thus,

1.s,21’[1-lrL[21
‘= I l-SnrL 1’

(2)

The question arises, which expression
should be used to determine K if only the
magnitudes (but not the phases) of the vari-
ous scattering and reflection coefficients are
known. If I r& I is known (and since the

phase of r~ is arbitrary) the possible range

of K may be determined from the maximum
and minimum values of K given by (2),

namely,

I S1l/z[l- ]rL12]
K–

‘ax - [1 – [ S#Ll ]2
(4)

[s12/2[1 - lr~l’]
——— .‘mi. = [1+ I .s,,r~ I l’ (5)

(It is interesting to note that the db differ-
ence between K~.x and Krni.,

1 + ] S22rL I
20 log ———- ,

1 – I SZ2rL \

is independent of S122 and increases almost
linearly with I .%#L ) for small values of this
product.)

When I rim\ is known (and is the only re-
flection coefficient accessible to direct meas-
urement because the load is an integral part
of a structure which cannot be readily taken
apart) (3) must be used to estimate the pos-
sible range of K. If the worst possible phase
combinations of the coefficients are used in
the estimation, an unnecessarily large un-
certainty in K will result if the phases of SU,

S22, and S,, are assumed completely inde-
pendent. In actuality the phases are restrict-
ed by the following relation if the 4-pole is

to be physically realizable.1

1 R. LaRosa and H. J. Carlin, “A general theory of
wideband matching with dissipative 4.poles,’> I.
Math, and Phys., vol. 33, pp. 331–345; January, 1955.

TABLE I

RESULTSCALCULATEDFROM(2) FOR IrL I =0.15

1.S,,12=0.98 [s,9[2=0.95 [.S1,[9=0.90

Is,ll Km= Kmi. KO Error Km%, Kmin KO Error Knmx Knin Ko Error
—

0.03 0. 96S — — x E 0.929 0.009 0.8S9 0.872 0.ss0 0.0090.950 0 95s 0.010
— — — — — — — —

0.15 0.973 0.944 0.95s 0.015 0,943 0.915 0.929 0.014 0.893 0.868 0,880 0.013
—— — — — — — — — — — — —

0.10 0.98S 0.930 0.955 0.030 0.957 0.901 0.929 00Z9 0.907 0554 0. Sso 0.027

TABLE II

RESULTSCALCULATEDFROM(3) FOR Ir,. I ‘o.ls

1S,,12=0.9S 1.s,,12=0.95 1S,,12=0.90

Is,d Kmx Knin Ko Error KrJrm Kmin K. Error Kmx Knin KO Error
. — . — — — — — .

0.03 0.964 0.952 0.957 0.007 0.937 0.916 0.926 0.011 0.S92 0.S52 0.s75 0.023
— — — — — . — — — — .

0.05 0.965 0.954 0.957 0.008 0.942 0.912 0.926 0.016 0.899 0.S36 0.s75 0.039
— —— — . — — — . — —

0.10 \ 0.970 0.964 0.957 0.01: 0 947 0.9zz 0926 0021 0 905 0.847 0.575 0030

(1 – ]Sr,l’)’ – Is,,]’– ]s111’+ IS1l.S221’

= 2 IQ S1,”2S,,.S22. (6)

The maximum and minimum values of K
should be computed from (3) taking into ac-

count the above restriction.

If I SU I is assumed equal to I S,,], (3)
may be transformed to

~ = k,+ kl(@, &)

~1=
(7)

where

$ = arg (S1,*2S11.S22)
@=arg (f7in* .SU)
kO=l S1214+l Sll[4–[ .Sl,12–[riD12
k,(@, +) =A COS @+~ COS (~–@) –C COS v

A=2(l–[S,112)]S11ri~]

B=21Sl~12[SIlI’in\

C=2 I S12’S11S221 .

Eq. (6) then becomes

(1– I sl, p)’-2] SU[’+[ SJ’2CCOS1. (8)

Although @ is an unrestricted angle, z is
constrained by the above inequality to the
region ~ — as 4s r+a, where a is a positive
number s r whose value depends on I S12] 2
and I SIl \ ~. The extreme values of kl(~, $)

determine the extremes of k. The former can
be obtained in the usual way by setting
dkl/&b and ttkl/~~ equal to zero and solving
for the corresponding values of@ and ~. If a
solution lies within the permissible region for
@ and ~ the corresponding maxima and min-

ima of kl are evaluated. In addition solutions
for the maxima and minima of kl on the

boundary of the permissible region (~= rr–
a, ~ +a) are obtained by setting ~kl/&3

equal to zero on the boundary. The extreme
values thus obtained are compared with the
values (if any) which lie within the region
and the most extreme values are used in cal-
culating k~x and krnin.

The values of K~,x and Kxn,n have been
tabulated for two types of cases for typical
values of the scattering coefficients. In the
first type (Table I) I rL I is assumed known

and (2) is used in estimating the uncertainty
in K. In the second type (Table II) I r,. I is

assumed known, I SU I is assumed equal to
1.& I and (3) is used subject to the restric-
tion of (6). The uncertainty in K may be ex-
pressed by the difference between K~,x or

K~ir, and an intermediate value Ko, ob-

tained by setting I SU I = 1.S22I =0. BY (2)
and (3) respectively

I S12[4 - I I’inlz
Ko=———

is,, [’

(9)

KO = ISH[2[1 – I rL12]. (lo)

The importance of the physical realiza-

bility criterion can best be appreciated by
considering an example. Let I Su I = [ S22 I

=0.1, lsI.zl’=o.95 and lri~l =0.15. For the
worst phase combinations (3) gives a maxi-
mum difference between K and KO of about

9 per cent if the phases are unrestricted.

This is reduced to 2 per cent if the restriction

of (6) is applied.
In most cases KO is not much different

from a value midway between K~x and

~,n and may therefore be used to repre-K

sent K with minimum error. The only 4-

pole parameter required to determine KO is
the attenuation, I S12\ 2, of the 4-pole. For a
structure such as a short piece of waveguide
I S,, 12 is usually a smooth and slowly vary-
ing function of frequency which can be de-
termined once and for all.

In measuring PL the coefficient I ri~ I can
generally be determined at the same time,
whereas [ rL I must be derived from previous
measurements, generally by interpolation

between data points. Eq. (9) will therefore

be more useful than (10). Moreover, for
small attenuations ( I S12I 2> 0.95), (9) will

yield a smaller uncertainty in K than (10).
For larger attenuations (9) rapidly loses its

usefulness and (10) yields smaller uncertain-
ties. However, if interpolated values of I r~ I
are used and I rL \ is an erratic function of
frequency these uncertainties may be ap-
preciably increased.
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